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Abstract

Previous analyses of macroeconomic imbalances have employed models that either focus ex-
clusively on real-side effects or financial-side disturbances. Real-side models usually make the
unrealistic assumption that firms that save more than they invest effortlessly and costlessly
transfer those surpluses to deficit firms, firms that require additional savings to sustain their
plans for capital accumulation. On the other hand, there exists a well-developed, rigorous
and elegant literature that uses the multi-agent systems (MAS) approach to analyze the
recent financial crisis. These stand-alone models of the financial sector focus on the network
structure of financial interplay but typically ignore real side interactions. In this paper paper,
we develop a MAS model that integrates real and financial elements. The focus remains on
the network structure and it is seen that randomly connected networks are more crash prone
than are preferentially attached networks of financial agents. when real-financial interactions
are taken into account. The results cast doubt on the connection between systemic risk and
financial entities that are “too big or too linked to fail.”

Keywords: Systemic risk; Crash; Herding; Bayesian learning; Endogenous money;
Preferential attachment; Agent-based models., JEL codes D58, E37, G01, G12, B16, C00

1. Introduction

The motivation for this paper is the “great immoderation”, the rise in the number of
significant stock-price drawdowns over the last three decades.2 The paper employs a multi-
agent systems (MAS) model to study the effects of adding a real sector to a relatively
well-developed and now standard analysis of the financial system that arises out of network
analysis (Acemoglu et al., 2012). The model builds on an existing real-side MAS model,
due to Setterfield and Budd (2011), which has roots in the structuralist tradition (see Taylor

1Thanks to Amitava Dutt, Jerry Epstein, Diane Flaherty, Arjun Jayadev, Blake LeBaron, Victor Lesser,
Suresh Naidu, Andre Neveu, Rajiv Sethi, Gil Skillman, Peter Skott, Daniel Thiel and Roberto Veneziani for
useful comments on earlier versions. Programming assistance by Paul Wright is also gratefully acknowledged.
We with to thank Jeannette Wicks-Lim for making available advanced computational facilities of the Political
Economy Research Institute for the project.

2Financial crises in various guises are usefully surveyed in Reinhart and Rogoff (2009), who identify the
build up of debt, either public or private, as the principal cause of financial collapse.
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(1983), Taylor (1991), and Setterfield (2010)). A financial sector, inspired by the MAS finan-
cial models of Johansen et al. (2000), Sornette (2003), Harras and Sornette (2011), Tedeschi
et al. (2012), LeBaron (2012), Thurner et al. (2012), and others, is then added. The result is
a model of the economy in which financial intermediation can constrain investment spending
by firms, and hence the pace of growth in the real sector. Meanwhile, the profits and sav-
ings generated in the real sector affect the ability and willingness of financial intermediaries
to lend. The conclusion is that real-financial interactions increase the likelihood of crises,
while preferentially attached financial networks decrease the probability of financial collapse.
The results suggest that the often supposed connection between systemic risk and financial
entities that are “too big or too connected to fail” may be oversimplified.”

The paper is organized as follows. The next section describes the simulation model and
how it is designed to capture real-financial interactions. The role of endogenous money is
identified and the way in which financial forecasts and asset prices are modeled is elucidated.
A major focus of this section is on network structure, whether financial agents are linked
randomly or by way of preferential attachment. Both weighted and unweighted networks are
considered. The third section presents the simulation design and results, with attention to
how crashes are identified, simulation settings and descriptive statistics of the large volume
of output data. The fourth section concludes. An appendix contains the pseudo code of the
model.

2. The simulation model

Real side models of any economy are complicated as are stand-alone financial models.
It follows that a model that seeks to combine the two can easily become unwieldy without
some well chosen simplifying assumptions. While there are many ways in which an amalgam
of the real and financial sectors could be configured, the model of this paper is set out on a
grid with agents divided into two subsets, firms and financial agents. Simple behavioral rules
are defined for these agents and the macro performance of the model arises as an emergent
property of the interaction of the agents. There is no policy authority and all adaptation is
through reinforcement rather than directed learning.

Figure 1 illustrates the three principal structural features of the multi-agent model, firms,
financial agents, and financial network architecture. Each firm, represented as a colored
square, operates only one production process, combining capital and labor to satisfy demand
for a homogeneous good.3 The dilemma for firms is whether to invest. This decision is based
on expectations about future market conditions and firms’ ability to cover any short-fall in
planned investment over accumulated savings through borrowing from the financial system.

Firms generate financial surpluses when they save more than they invest and these finan-
cial surpluses are held by their financial agents, represented by numbered circles in figure
1. Financial agents must then decide how to allocate these surpluses across the grid. Their

3This is the easiest way to think about the adjustment mechanisms in the model. Equivalently, there
could be heterogeneous goods with prices adjusting behind the scenes. Price movements would shift investible
surplus from one firm to another, but the overall macro properties of the model would remain unchanged.
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Figure 1: Principal structural features of the model

dilemma is also binary: lend/do not lend. This decision depends on financial agents’ fore-
casts of market conditions. Like firms, the financial agents are elementary agents, with only
one on-off decision to make. Consequently each financial agent can at most offer financing
for one production process. Figure 1 shows, however, that firms can have access to more
than one financial agent. Financial agents can be assumed to have first ranked their clients
and will only deal with their most preferred. Finance for firms, by contrast, is fungible and
given a fixed and constant interest rate, firms need only be concerned with the quantity of
finance available.

Network architecture is represented by the edges joining the numbered financial agents in
figure 1, and influences how financial surpluses are allocated.4 Suppose that the surplus firm
in the first panel of figure 1, shown in gray, makes a deposit with financial agent 0. For the

4Network architecture also influences financial agents’ expectations, which are based (in part) on the
forecasts of their linked network neighbors. See section 2.2.2
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moment, take financial agents’ expectations as given, denoted as light (“bearish”) and dark
(“bullish”). Financial agent 0 is connected to financial agent 1 and through torus wrapping
to financial agent 2. Financial agent 1 is bearish but in any case has nothing to do, since
the firm to which she is willing to lend is in surplus. Financial agent 2, however, serves a
deficit client and is connected to financial agents 0 and 3, who is also serving a deficit firm.
Financial agent 2 then calls on financial agent 0 to make the surplus available for her client
and savings is thereby channeled from a surplus to a deficit firm. Financial agent 3, however,
is stymied, since indirect access to financial agent 0’s funds is not permitted in the model.5

In any event, financial agent 3 is bearish and would block any flow of finance that happened
to be available. Financial agent 4 is not part of the cluster of financial agents discussed here,
but is connected to financial agents on other parts of the grid not shown in figure 1.

These behavioral decision rules are executed asynchronously thereby allowing the possi-
bility of collisions, conflicting claims on financial resources, on the grid. At the end of each
period, firms deposit their savings out of profits determined by a given savings propensity. At
the beginning of the following period, financial agents respond to demand for this liquidity
from both surplus and deficit firms. If a deficit firm applies for a loan before the surplus firm
has had a chance to invest the funds, a collision is created. The conflict is resolved claims
that can only be resolved by allowing financial agents to create money.6 The endogeneity of
the money supply is critical to the macro performance of the model, since if investment were
always constrained by savings, there would be no room for expectations-driven growth.

The second panel of figure 1 shows the same neighborhood one period later. Note that
the network architecture, the number of firms, and the number and location of financial
agents remains fixed. Observe that the surplus firm of the first period is now in deficit and
the formerly deficit firms in the north-east and south-east positions are now in surplus. The
forecasts of financial agents have also changed. Generally, forecasts remain heterogenous as
shown in the third panel of figure 1. It is possible for a grid-spanning cluster of opinion to
arise, however, as illustrated in the fourth panel of figure 1 where all financial agents are
bearish. As explained in detail below, this spanning cluster sets the stage for a financial
crash. The probability of the formation of a grid-spanning cluster measures the systemic
risk of the system.

Even under this rash of simplifying assumptions there is necessarily complex machinery
supporting how the central decisions of the two agent sets are made and joined by the network
structure. The following sections describe more precisely how firms decide to accumulate
capital and how financial agents decide whether to assist in the process or throw sand in the
gears.

5One alternative is to allow each financial agent complete access to all other financial agents on the grid,
an obviously unrealistic assumption. To capture the locality of intermediation, information constraints and
boundedness on the rationality of the financial agents, some line must be drawn. For simplicity, the line is
drawn here at one ply.

6This simple model thus reflects the hidden presence of a monetary authority that does not allow credit
creation, except when these collisions occur. See section 2.2.1 below for a fuller discussion of this assumption.
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2.1. The real side

The real side of the model is derivative of Setterfield and Budd (2011), in which a stan-
dard structuralist model is recast as a multi-agent system. They treat each firm as a separate
economy with its own growth dynamics, essentially as in a trade model. Here a second ap-
proach is adopted, in which each firm operates a productive process within a macroeconomy,
thereby sharing in available aggregate demand at a given instant in time. The re-allocative
mechanism is simply to adjust demand shares so that any demand that would cause the
capacity of the ith firm to exceed one, spills over to the jth.7 If the overflow causes the
capacity utilization of the selected firm to rise above one, then its overflow is allocated to
another randomly selected firm and so on. The mechanism halts when all firms are either
at or below full capacity utilization.

Following Setterfield and Budd (2011) assume that labor income per unit of output, li,
is spent on consumption while a fraction, si of capitalists’ income, πi = 1− li, is saved.8

Investment by the ith firm is Ii = gi(ui)Ki where K denotes the capital stock and g(u)
is an accumulation function that depends on capacity utilization, ui, and animal spirits, α0

of the form

g = α0 + α1u+ α2rate (1)

where the α’s are calibrated constants and the rate of profit is r = πX/K.9

Using carets to denote diagonal matrices, the real side can be expressed compactly as

x = Q̂u

where x is an n-element column vector of firm outputs, Q̂ is a diagonal matrix of full capacity
output and u is a column vector of capacity utilization rates. The system can be written

7Since the solution algorithm allocates demand randomly among firms on each sweep, the ith and jth
firms are well defined at runtime and, moreover, no bias is introduced. Of course if no firm reaches full
capacity utilization in a time period, demand shares need not be adjusted.

8Each firm hires workers according to a uniform probability distribution U(0.3, 1/30). How the savings
rate, si, is calibrated is discussed in the next footnote.

9To calibrate equation 1, the animal spirits intercept, α0 is set at half the randomized value of g and
the coefficient on capacity utilization. The coefficient α1 is uniformly distributed between 0 and g/4. The
calibration of the last coefficient is a residual and is undertaken as follows. The initial growth rate of each
firm’s capital stock is randomly distributed according to g ∼ U(0.07, 1/300). Each financial agent has a
portfolio, the nominal value of which is set to unity. The initial capital stock, K, of firms then depends on
the number of associated financial agents. Output is given by applying a capital-output ratio, ζ randomly
distributed according to ζ ∼ U(3, 1/6). Output in this case is capacity, Q; full utilization of capacity, u = 1
is initially assumed for simplicity but can vary away from 1 as the model runs. With output, X, and K
known, r is determined and so α2 must be calibrated as a residual in equation 1. To see how the savings rate
s is calibrated, note that the rate of investment for the ith firm, is Ii = giKi+ δKi so that with a common
rate of depreciation, δ = 0.05, the rate of investment for each firm is known. Summing the investment
functions over the 676 firms gives a total value for aggregate investment and thus total savings and the
aggregate savings rate, s̄. Each individual firm’s savings rate is then initially normally distributed according
to si ∼ N(s̄, 0.0025), with the mean depending on each initialization. The savings rates are then scaled to
give total savings equal to total investment so that the initial solution is in macroeconomic equilibrium.
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with output as a function of consumption demand D and investment, gKt−1 as

Q̂u = λ̂
[
DQ̂u + gKt−1

]
where λi is the share of aggregate demand absorbed by the ith firm, and where

u =

[
u
1

]
, D =

[
1− s1π1 1− s2π2... 1− snπn
1− s1π1 1− s2π2... 1− snπn

]
, gK =

[
g1K1 g2K2 ... gnKn

g1K1 g2K2 ... gnKn

]
Since both λ̂ and Q̂ are diagonal and therefore symmetric the system can be solved for u

u = λ̂
[
Q̂−1DQ̂u + Q̂−1gKt−1

]
(2)

The computational model solves the vector equation by way of the Gauss-Seidel method. At
each iteration, the vector of λ’s is updated to reflect the firm’s new share of total aggregate
demand that results from either its having encountered the full capacity constraint or having
to satisfy spillover demand from a firm that has reached full capacity. The order in which
firms are allocated spillover demand is random, so that no particular firm benefits from
the procedure. Note that there is no implicit optimization of output here; the program
simply looks for a basic feasible solution to a simultaneous set of demand equations under
the constraint that no level of capacity utilization can exceed one. Once it finds a basic
feasible solution, the Gauss-Seidel halts. Without this mechanism, firms could produce an
unbounded quantity of output without regard to the necessary factors of production.10.

2.2. The financial sector

Financial agents are Bayesian rational network learners, updating priors by reference to
the real-side performance of their own clients. The key parameter of the financial network
is the the degree distribution of edges. Here, both random and scale-free networks are con-
sidered. In random networks the degree distribution is Gaussian whereas scale-free network
architecture depends on a scaling parameter γ.11 The probability that a given financial agent
is connected to d other financial agents is then given by

zp(d) = d−γ

where z is a scale-invariant calibration constant.
The degree distribution p(d) depends on the specific architecture of the network. Follow-

ing Erdös and Rényi (1950) a random network is constructed in the multi-agent system of
this paper by instantiating financial agents and then linking them to exiting financial agents

10The initial shares of aggregate demand are set in proportion to Qi
11Scale-free networks have a power-law degree distribution of links, which means that a few nodes have a

very large number of edges, while most nodes have a small number. A network in which 20 percent of the
nodes are connected by 80 percent of the edges is a Pareto-Zipf distribution or power-law degree distribution
(Barabási and Albert, 1999; Bagrow et al., 2008).
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randomly. A second mechanism, due to Barabási and Albert (1999), employs preferential
attachment. In the setup routine, the likelihood that an additional financial agent created
is linked to an existing financial agent now varies directly with the degree of the potential
partner.12 Once initialized, the number of financial agents is held constant for simplicity. In
a random network, the spread of shocks requires that a certain minimum number of vertices
are impacted, whereas in a scale-free network, this threshold is essentially zero (Iori et al.,
2008). By generating networks both randomly and through preferential attachment, whether
the latter makes the financial system more crisis prone can be tested.13

In addition to the degree distribution of links between financial agents, the model of this
paper also applies weights to distinguish larger and more influential financial agents from
the rest. Each financial agent is associated with a real-side production process but the latter
have a distribution of capital stocks, which in turn implies that their associated financial
agent may wield more power and influence than the degree distribution alone would capture.
The weight, ωij, attached by the jth financial agent to the link to the ith agent is defined
as

ωij =
Ki∑
f∈F Kf

(3)

where F is the set of firms and the t subscript has been suppressed. The weight attached to
a link by any financial agent is then the share of the total capital stock served by the agent’s
linked neighbor. Note that in models without associated real sectors, no such weighting
scheme naturally suggests itself.

The weighted degree distribution integrates the interconnectedness of the financial sector
with the real side. The impact on the stability of the system as a whole remains, however,
an open question to be decided by numerical simulations. Weights could, for example,
dampen random fluctuations in the outlook of smaller financial agents, thereby reducing the
propensity to crash in the aggregate. If a few decide to block loans to their own customers,
there is little effect on aggregate capacity utilization. On the other hand, a bearish outlook
on the part of an influential financial agent could block investment and reduce demand,
quickly infecting other agents with its pessimism. These two effects may even cancel each
other out.

2.2.1. Endogenous money

As noted a deficit firm may well have already contracted with a given financial agent
to borrow the funds that a surplus firm has deposited and plans to invest but, due to the
asynchronous nature of the computational model, has not yet done so. If the funds are so

12For example, suppose that financial agent A is already linked to both financial agents B and C, each
of whom are connected only to financial agent A. There are thus four network connections in total. The
probability that a new financial agent, D, will link to financial agent A is 2/4 = 1/2, whereas the probability
that D will link to B (or alternatively, to C) is 1/4.

13Note that preferential attachment is a simplification that comes at the cost of precluding clustering.
This is ruled out since no existing financial agent can add a link to some other existing financial agent that
has already attached itself to the network.
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preempted, the financial agent is left with no choice but to create liquidity when surplus
firms demand their own funds. Deficit firms can and do crowd out other deficit firms due to
the limitation given by the total surplus. They cannot, however, crowd out surplus firms.

Observe that rather than assume a Keynesian framework in which animal spirits have
room to play a defining role in the determination of investment and growth, the agent-based
perspective allows a derivation of the Keynesian nature of the economy. Specifically, the
regime of property rights in banking–that agents own and control their deposits–combined
with an asynchronous stream of borrowing requests by deficit firms imparts to a model a
Keynesian flavor. The reason is now clear: it would only be if a surplus firm were to realize
and accept that its investment plans were blocked because a deficit firm had beaten it to its
own money that the neoclassical savings in advance model could assert itself. No conceivable
real agent would behave this way in a system that protects private property in deposits.
Animal spirits ultimately allow aggregate investment in period t to exceed savings in period
t− 1 and, at least in part, these animal spirits are authorized by the institutional properties
of the financial system. In other words, the agent-based model provides a micro-foundation
for partially endogenous money and in turn the Keynesian system itself.14

Of course there would be no reason to distinguish surplus and deficit firms if credit
or money were fully endogenous. Firms that lacked sufficient savings from the previous
period would simply borrow for investment from financial agents who are, in turn, able
to create money. Creating money is nothing more than making a loan unsupported by
previous deposits and the point of this section is that any institutional framework that
binds autonomous agents with financial surpluses and deficits in asynchronous exchanges
will necessarily produce some residual quantity of endogenous money.

Figure 2 provides a sensitivity analysis of the basic assumptions of the model. The upper
trajectory corresponds to full capacity utilization, with fully endogenous money, and ebullient
animal spirits. The lower trajectory is a bound along which no deficit firm preempts a surplus
firm and so no money is created.15 While highly unlikely, the savings constrained trajectory is
included for completeness.16 With asynchronicity giving rise to partially endogenous money,
a typical simulated economy will find itself somewhere between the extremes of figure 2. The
mean trajectory shown in the figure is derived from a large number of paths of the simulation

14Note that as modeled, the financial sector reflects the spirit of Kalecki’s principle of increasing risk, by
making the execution of planned investment easier for surplus firms, which are investing their own capital,
than for deficit firms that need to borrow in order to invest (Kalecki, 1937).

15The economy described by the lower path will eventually turn down. If any deficit firm is rejected by
a financial agent investment is blocked and savings re-equilibrates at lower level. The decline in aggregate
demand can then cause firms that would otherwise have been in surplus to fall into deficit, increasing
the probability that investment plans will be blocked by a shortage of surplus, bearish sentiment, or local
availability on the grid. An isolated event then propagates and in so doing imparts a negative trend to GDP
as seen in figure 2.

16The upper bound is, in reality, just as unlikely since it presupposes that no financial agent will ever block
the investment plans in the real sector. The potential instability provoked by such a system of unrestricted
credit was made abundantly clear in the recent financial crisis.
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model described in more detail below.17
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Figure 2: Credit creation in the multi-agent system

2.2.2. The financial agent’s forecast

Conditional on having sufficient liquidity, a financial agent will provide finance to a
client firm if the financial agent is optimistic that the value of these shares will rise over
time. Lacking perfect foresight, financial agents form an opinion about the distribution of
the change in share prices in the form of a forecast. In each period, t, financial agents update
their forecasts consistent with the Bayesian model. In the Gaussian version of the Bayesian
model, this means that each financial agent has a subjective probability distribution of the
change in share prices.

The updating proceeds as follows: θt is an observation from the stationary distribution
of share price changes, N(θ̄, σ2). Each financial agent (identifying subscript suppressed) has
a prior subjective distribution N(φp, 1/ρp), where ρp is the precision of the prior signal, the
inverse of the variance.

17The simulations do not claim to be representative of any actual path in a real economy. The trajectories
in figure 2 were engineered to have a nearly zero slope in order to reduce the probability of a purely real side
crises that would then propagate to the financial sector, as explained in more detail below.
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As in standard Gaussian Bayesian updating, each financial agent then receives an infor-
mative private signal, not observable to other financial agents

µt = θt + εt

where εt ∼ N(0, 1/ρε) where, ρε, is the precision of the private signal.
Each financial agent uses this signal to update their prior precision

ρt = ρp + ρε

Note the precision of the prior signal is improved by an informative private signal. In period
t, the financial agent’s forecast, φt, of the state of the economy, θt, is then just the updated
mean of the Bayesian prior distribution, φp,

φjt = κµt + (1− κ)φp

where where (1− κ) is the weight on the Bayesian prior and

κ =
1

ρp
ρε

+ 1

There are many ways an agent’s private signal, µt, could be modeled. In modern finan-
cialized economies agents frequently employ sophisticated data analysis. A simple approach
would then be to model the private signal as a function of the current capacity utilization of
the financial agent’s client. Here the financial agent records the level of capacity utilization
in a private data base and then forms a forecast by regressing a subset, τ , of these utilization
rates on time according to

ut = β̂0 + β̂1t+ εt

with t = 1, 2, ..., τ , with εt iid. Since different financial agents weight history differently, the
size of the subset, τ , varies randomly between 3 and the 13 time periods. The private signal,
µt, is thus

µt = β̂1 + νt

the trend regression slope coefficient plus random error, νt. A positive trend is associated
with a bullish private signal. The error term allows financial agent intuition to dampen or
amplify the signal and thus allow for contrarian behavior in the model.

The mean of the prior distribution, φp, is determined by the share weighted average of
the forecasts of the financial agent’s linked neighbors, denoted as set J ′

φp =
∑
i∈J ′

ωijφi

where ωij are the share weights in equation 3. A positive forecast is, again, a bullish prior of
intensity depending on the same Bayesian updating undertaken by each of the agent’s linked
neighbors.
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The relative precision of the private signal is determined by forecasting error, which in
turn depends on how the market actually behaves. Given the unboundedness of a forecast
error for any agent and the requirement that the forecast error determine the relative preci-
sions of the signal and prior, it is necessary to map the forecast error into an open interval
(0, 1).

This is done in a two-step process. Suppose that the slope coefficient on a financial
agent’s regression is positive. If the price does increase, ∆p > 0, then the financial agent has
made a correct forecast. If the financial agent’s linked neighbors forecast a price decrease,
the financial agent has “beaten the market”, demonstrating expertise relative to the linked
neighbors.18 If the financial agent beats the market in any given period, the financial agent
records binary success of 1 and 0 if the market beats the financial agent. In the case in which
the financial agent and linked neighbors forecast the same price movement, the financial agent
records the average of the binary signals. The financial agent then computes an average of
these signals over the idiosyncratic τ history to arrive at a raw forecast error. In the second
step, the financial agent attenuates the raw forecast error by way of a logistic smoothing
function, as is common in machine learning models of neural networks (Russell and Norvig,
2010).19

Specifically, the evolution of κt is modeled as follows. First, the financial agent processes
the raw forecast error as follows

µt ×∆p > 0

{
φp ×∆p < 0 set ηt = 1

φp ×∆p > 0 set ηt = 0.5

µt ×∆p < 0

{
φp ×∆p < 0 set ηt = 0.5

φp ×∆p > 0 set ηt = 0

Next, the average of the ηt over the last τ periods determines the position on the logistic
smoothing function

κt =
1

1 + e[γ1−γ2(1−
1
τ

∑τ
t=1 ηt)]

where γ1 and γ2 are calibrated to center the logistic function on 0.5 with some random
variation for each agent.20 The weight on the private signal varies logistically between 0 and

18There is a long tradition in economic theory that holds that market prices reflect all (publicly) available
information, and apart from insider trading, “expertise” does not really exist. Financial agent are successful
only because they are lucky. Agents in models with endogenously determined variable signal precision cannot
be said to be actually learning anything about their reward field, but they may behave as if they think they
can. Linked neighbors may be fooled by their apparent success without actually learning anything.

19Consider for example a financial agent who initially places equal weights on both the private and prior
signals. The horizon for this particular financial agent is τ = 3. In the last three periods, the financial
agent beat the market, recording η = 1 each time. Does the financial agent stop updating, concluding that
the precision of the private signal is then one? To avoid this unrealistically volatile behavior on the part of
the financial agent, the model assumes that successful forecasts are “squashed” by the logistic function of
equation 2.2.2.

20The constants are uniformly distributed γ1 ∼ U(5.5, 1/12) and γ1 ∼ U(9, 1/3).

11



1, and is inversely related the forecast error. The logistic function prevents abrupt swings in
the relative weights of the private and public signals in any given period.

The evolution of κ described above is consistent with standard “spin-glass” models. Note
that if the financial agent’s network neighbors consistently forecast asset price movements
correctly while the financial agent’s private signal is always at odds with asset price move-
ments, relative signal precision and hence κ will fall, and its complement will increase at a
decreasing rate toward one. The informational content of the capacity utilization of firms
is ignored as the spanning cluster begins to form and social learning breaks down, giving
way to herding behavior and in the limit, when all financial agents are herding, cascades
(Chamley, 2004). Financial agents become progressively detached from the source of in-
formative signals, their own firms and the firms of their linked neighbors. The more the
informational bond between the real and the financial sector breaks down, the more likely
order, the precursor of financial collapse, becomes. Systemic risks begins to rise (Hansen,
2012).

2.2.3. Preferential attachment and lending

If lending agents do not have the liquidity necessary to satisfy the demand for borrowing
by deficit firms, they may call on their linked neighbors to ask for a loan. Linked financial
agents who have sufficient funds can agree to loan the originating financial agent the balance
to meet the demand for liquidity of the deficit firm. The depth of this lending relationship
is limited to one ply as noted above.

Fin Agent
bullish?

Loan
blocked

Deficit firm

Deposits
adequate?

Linked
neighbors
can lend?

Loan
blocked

InvestInvest

yes

no

no no

yesyes

Figure 3: Financing investment of the deficit firm
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Figure 3 describes the decision tree with a deficit firm petitioning a local financial agent
for a loan. If the financial agent is bearish, with a negative forecast, then the loan is denied
and the investment is blocked. If the financial agent is bullish but short of liquidity, the
financial agent asks his linked neighbors if they can make the funds available. Crucially, the
loan does not depend on the forecast of the linked neighbors. The loan originator in this way
bears all the risk, while counter-party surveillance of the originator by the linked neighbor
is effectively nil.21

Again the structure of the network is hypothesized to be crucial to systemic risk. With
preferential attachment, bullish financial agents with many linked neighbors will be more
able to make loans, and so their ability to finance deficit firms will rise. A firm associated
with one of these financial agents is much more likely over time to find finance for any
deficit that might arise. As a result, firms with highly linked financial agents will tend to
accumulate capital stock more easily and grow larger over time.

As a high-degree hub turns bearish, however, it blocks loans to its own client if at that
instant, the client happens to be in deficit. This, of course, reduces the level of effective
demand in the system and to a greater degree since the firm’s capital stock will likely be
large. As large firms reduce their investment demand, other surplus firms may well go into
deficit. Preferential attachment concentrates this kind of demand shock to the system in the
hands of a few financial agents. On the other hand, highly linked, bearish financial agents
having refused loans to their own clients then have more liquidity to pass along to their
bullish linked neighbors. Sorting out the net effect of these currents and counter currents on
aggregate demand, share prices and systemic risk is the job of the simulation model below.

2.2.4. Asset prices

The share price is defined as an index of financial agents’ forecasts plus a trend based on
the size of the aggregate capital stock.22

If the sum of forecasts is bullish, the share price rises and vice-versa, relative to the trend
that depends on the accumulation of capital stock. The equation for the share price is

∆pt+1 = ψ
∑
i∈J

ωijtφit + ψK
∑
i

Kα
it

where ψ is a parameter determining the scale of the marginal sensitivity of the share price to
variations in financial agents’s forecasts, ψK a constant is set at 5× 10−5 and the elasticity

21This absence of of counter-party surveillance was one of the hallmarks of the recent financial crisis. Its
deprecation could have been extended to a more lengthy and complex set of financial associations, but is
limited to one ply here for model simplicity.

22For a more sophisticated stand-alone financial model, which enables financial agents to explicitly buy,
sell or hold equities, see LeBaron (2012). In LeBaron, asset prices are set to clear the market for a fixed
supply of equities. The simplified approach adopted here also captures most common stylized properties of
asset prices, as seen below.
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α = 0.5.23 The share price is a random walk during “normal” times, but breaks out during
organized bull or bear markets to produce a bubble and then possibly a crash.

3. Simulations

3.1. Simulation design

To summarize the model, agents are divided into two disjoint subsets, firms and financial
agents. A firm is instantiated with randomly assigned capital stock, savings rate, direct labor
coefficient, and parameters of an investment function that depends on both animal spirits
and capacity utilization in the previous period. Financial agents are instantiated with a
forecast, an initial relative weight of private and prior signals, and linked neighbors within
a network structure that depends on whether the model is run with or without preferential
attachment and share weights. Financial agent must also keep track of liquidity and shares
in the firms to which they make loans. Trades and production are tracked on a weekly basis.

The model generates real and financial performance over 1,500 week (30 year) periods.24

The simulations are approximately ergodic since they are run for 2,250 trading weeks (45
years) prior to the 1,500 trading-week (30-year) period for which the data is recorded in order
to mitigate the influence of initial conditions on the results. No crashes are counted during
the first 2,250 weeks. There are then a total of 14,178 runs recorded in the data base, 3,599
runs with the financial constraint off and 10,579 runs with the financial constraint on.25

3.1.1. Identifying crashes

Using historical series for the S&P 500, it was determined that a typical build and crash
involved some 225 weeks in total. A build is an increase in the share price from a period
225 to 25 weeks before a crash in period t.26 Thereafter, a crash is a decline of 50 percent
in the share price within the final 25 weeks. This roughly corresponds to the single worst
six-month performance in the history of the S&P 500 index.27

23Initially, ψ = 0.1; thereafter, it evolves endogenously according to

ψt+1 = ψt + φ̄t

where φ̄t is the average forecast. This last term is included so that the stronger the financial agents’ forecasts,
in either direction, the greater the change in the share price.

24This chronology is advised by the observation of discrete episodes of growth, such as the Golden Age
(1948-1973) or Neoliberal growth regime (1980-2007), lasting for 25-30 years and ultimately resolving in real
and/or financial crises (Maddison, 2007).

25For computational reasons, the total number of runs per batch was 900 and there were 16 batches run for
a total of 14,400 simulations. From these results, there were 221 runs deleted with the financial constraint
on and one deleted with the financial constraint off. The larger number of runs with a binding financial
constraint is needed to study the various configurations of network architecture used in modeling the financial
constraint.

26The criterion for a build is designed to rule out a series that declines for a long period and then accelerates
its decline.

27The decline in question took place during the 2008-09 financial crisis.
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This (admittedly arbitrary) definition applied to every 225-week period in each run. If
the pattern of price movements fits the crash specification, the program records a crash and
halts.28
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Figure 4: Build and crash identification

Note that the limited horizon for the drawdown, distinguishes a crash from a “soft-
landing” orderly correction. The method does not necessarily find peaks or troughs and
therefore cannot be used to quantify the size of a given drawdown.29

Figure 4 provides some examples of how the crash identification method works in the
model. The build in the first panel of figure 4 is sufficient for a crash but the percentage
drop of less than 50 percent disqualifies the drawdown. There is a much larger drawdown in
the second panel of the figure, but note that the period over which the price declines is more
than 150 weeks. In any given 25-week period the drawdown does not exceed 50 percent and
moreover, even if it did, the build is insufficient to identify a crash. The third panel presents
a more complex situation. There the build to week 100 is inadequate for a crash between

28Neftci (2008) provides a more sophisticated and comprehensive method to date crashes that could also
be implemented. The method requires calibration however and thus could be adjusted to get approximately
the same number of crashes as the vastly simpler procedure employed here.

29While no crashes are counted in the first 2,250 weeks, crashes that are defined by builds that begin in
these weeks are included.
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week 100 and 200, even though the drawdown qualifies. Note, however, that in later periods,
a strong build is observed but the higher absolute value of the index limits the percentage
change, thereby preventing the identification of a crash after week 350. The fourth panel
finally identifies a crash. Note the superimposed triangle with the build slope greater than
zero for 200 periods and drawdown greater than 50 percent.

3.1.2. A look at the model’s dashboard

The primary distinction in the model is whether the financial constraint is binding. When
money is exogenous, the real sector contracts, with capacity utilization rates falling below 60
percent as discussed above. This usually produces a financial crisis. The cases are excluded
in the results discussed below. The crash identification methodology described above should
then be thought of as conditional on average capacity utilization exceeding 0.6.

Financial networks are either random or subject to preferential attachment, and either
weighted or unweighted by shares of capital stock. The resulting degree distribution that
shows the frequency of high- and low-degree financial agents is illustrated for some 250
initializations in panels 1 and 2 of figure 5. In log-log space the distribution in panel 2 is
not linear but concave. A power-law, in contrast, will produce a characteristically linear
degree distribution, as shown in panel 1 of figure 5. The critical exponent is approximately
2, a number typical of networks constructed in this way. Panel 3 of figure 5 shows that the
initial capital stock approximately follows a power-law distribution as in Axtell (1999). The
initial Bayesian prior weight is approximately normal, with mean value slightly below 0.3
and standard deviation of 0.08.

Figure 6 shows the behavior of the natural log of the modeled price in four panels for
all simulations in which a crash is recorded. Each displays only the last 250 weeks before
the crash and the mean of the trajectory of the log price. The crashes are identified by the
triangle method of panel four figure 4 as discussed above.

The are a number of important lessons to be gleaned from a comparison of these crash
patterns. The first two panels show crashes when the underlying financial network conforms
to panel 1 figure 5, that is when financial agents are preferentially attached. Crashes in both
weighted and unweighted networks are shown. Panel 3 shows the pattern for the random
network and it is seen that the variance of the log price is higher than with preferential
attachment. Note also the density of the third panel. This suggests that preferential attach-
ment does not make the economy more crash prone. Finally, the control case is shown in
panel 4 for which there is no financial constraint and so crashes are due to Brownian motion
only. There are few crashes and a more quiescent movement of the log price, confirming
that there really is nothing of note happening in real models without some kind of financial
constraint.

Real-side drivers are shown in figure 7. The first panel shows clearly that the when there
is no financial constraint, the model always operates at full capacity utilization. There is
no variation in capacity utilization from one run to another. Panel 2, however, tells a very
different story. For all simulations with a financial constraint, the effect is a pronounced
decline in the average utilization rate, shown by the heavy line. The variance in the utilization
rate is substantial from run to run, but in all cases is distinctly different from when there is
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Figure 5: Initial settings of the model

no financial constraint.
Panels 3 and 4 show the weekly growth rate of GDP. The model was set to produce no net

growth over time to prevent any bias in the tendency to crash that might arise. The result is
a framework the departs from the recent macroeconomic data of the U.S. or for that matter
any other country, but was deemed necessary to isolate the effect of the presence of the real
side on the probability of a financial crisis. Clearly, a rapidly expanding or contracting real
side can authorize financial panics or manias, but the question of interest in this paper is
whether the mere presence of real-financial interactions is material to the explantation of
financial collapse.

Despite the model’s rather remote connection to any given interval of real side growth as
captured by NIPA data, the financial side of the model is true to several underlying features
of the actual economy, as represented by the S&P 500 index. Reality figured prominently
into the definition of a crash above and a glance at the simulated log price shows that the
“fat tail” property of the actual S&P is reproduced in the runs of the model. Table 1 shows
the kurtosis of the log price for the runs with and without the financial constraint under
various network settings.

The overall kurtosis of the distribution of the log price in the model is 4.28 with the financial
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Figure 6: Log price prior to crash

constraint on and only 3.22 without it. Observe that with the financial constraint on, the
kurtosis is closer to that of the S&P. With no financial constraint the kurtosis is only slightly
above that of the normal distribution, 3.

Two other important properties of the S&P 500 are also captured in the model. The
published series displays what is widely known as clustered volatility, the fact that bursts
in prices, whether up or down, are clustered together. Interspersed are fluctuations of much
lower amplitude, which again seem to be serially correlated. The overall pattern appears in
figures 8 and 9.

That these series share a similar pattern of volatility is further supported by the results
shown in table 2 and the regressions in columns 1 and 3 of table 3. The average volatility of
the S&P over the last 30 years is 0.001414 as reported in table 2. Table 2 also shows that
with preferential attachment on and share weights on, volatility of the model’s price series
is closest to that of the S&P 500 data. The AR(1) table 3 regressions both have significant
coefficients on their lagged terms. This contradicts the null that large fluctuations in the log
price in the previous period have no effect on the probability of fluctuations this period.

The second and fourth columns test table 3 for the presence of a random walk in both
the simulated and S&P 500 time series. Here the augmented Dickey-Fuller test shows that
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Table 1: Fat tails (kurtosis) in the model and the S&P 500

Preferential attachment?
No Yes

Weighted Network? Weighted Network?
No Yes No Yes

Financial constraint?
Yes 5.43 4.63 3.76 3.77
No 3.20 3.17 3.10 3.10

Ref: S&P 500 6.92 6.92 6.92 6.92

Source: Authors’ computations based on Shiller (2013)

Table 2: Volatility (monthly data with t-tests of difference from S&P 500)

Preferential Attachment?
No Yes

Weighted Network? Weighted Network?
No Yes No Yes

Financial constraint on1 4.50E-04 6.06E-04 7.87E-04 8.65E-04
t-test -5.02 -4.21 -3.27 -2.86
Financial constraint off2 3.82E-04 4.83E-04 4.73E-04 5.78E-04
t-test -5.38 -4.85 -4.90 -4.36
S&P 5003 1.41E-03 1.41E-03 1.41E-03 1.41E-03

Source: Authors’s computations.
1. Average for financial constraint on: 6.81E − 04 t = −3.82, (n =
3, 924, 434). 2. Average for financial constraint off: 4.79E − 04,
t = −4.87 (n = 1, 345, 275). 3. n = 375

.
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Figure 7: Capacity utilization and growth with and without financial constraint

a unit root cannot rejected in either series. Neither are stationary and neither are mean
reverting.

3.2. Simulation results

In all runs the first 2,250 weeks were dropped for ergodicity. A total of 10,579 run were
retained after dropping those runs which crashed in these initial weeks. Within this set of
runs of 1,500 weeks (30 years), there were a total of 172 crashes with the financial constraint
on but only 4 with it off.

Table 4 show the crash frequency per 1000 runs, the average rate of growth of GDP and
the percentage of “loans denied”, which measures the number of deficit firms that are unable
to execute their investment plans because they are financially constrained. The table also
shows capacity utilization and the average Bayesian prior weight. Table 5 shows the same
data when the financial constraint is binding.

Comparing the tables confirms that with no financial constraint there are fewer crashes
in the financial sector (t = −11.2), faster growth (t = 35.7) and higher capacity utilization
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Table 3: Clustered volatility and random walk in the model and S&P 5001

(1) (2) (3) (4)
Model Model S&P S&P

Volatility2 ∆ ln(p) Volatility2 ∆ ln(p)

Lagged volatility 0.375*** 0.166**
(0.002) (0.050)

First lagged price 0.533** 0.265***
(4.216e-04) (0.046)

Second lagged price -0.489*** -0.317***
(8.006e-04) (0.697)

Third lagged price -0.002*** 0.0434
...

...
...

Tenth lagged price -0.004***
(3.417e-04)

Time 1.768e-07*** 5.029e-05
(5.799e-09) (2.825e-05)

Constant 4.56e-05*** 0.002** 0.001*** 0.035
(8.784e-09) (8.503e-06) (1.104e-04) (0.018)

R2 − adjusted 0.140 0.325 0.026 0.068
R2 0.130 0.325 0.027 0.074
Observations 1.57e+07 1.56e+07 657 656
F -stat 43,200 182,376 11 10

Robust standard errors in parentheses. *** p < 0.01, ** p< 0.05, * p< 0.1
1. Lag structure for model is AR(10) and AR(3) for the S&P data
since model data is weekly and S&P data is monthly. The total lag is then
three months for both data series.
2. Demeaned volatility or {∆ln(p)− E [∆ln(p)]}2

21



0
.0

2
.0

4
.0

6
Vo

la
til

ity

0 100 200 300 400
Time (months)

 Source: Authors' calculations

Figure 8: Clustered volatility in a typical run of the model

(t = 72, 000) in the real sector, results that agree with the theory developed above.30 When
there is no financial constraint there are no loans denied and so there is more investment,
higher capacity utilization and faster growth. There are fewer crashes since the real sector
does not transmit “bad news” to the financial sector that can cause crises.

These results demonstrate the importance of real-financial interactions for financial in-
stability. When firms are financially constrained real economic performance deteriorates
(growth slows and capacity utilization falls), producing a response in the financial sector
where the frequency of crashes increases. When the real and financial sides of the model are
dissociated, crises arise from Brownian motion alone. Table 4 confirms that Brownian crises
arise, but they are rare as would be expected.

30As noted, the absolute growth rates are an artifact of the model’s parameterization and so there is no
particular significance to the size of the growth rate in table 5.
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Table 4: Financial constraint off

Preferential Attachment?
No Yes

Weighted Network? Weighted Network?
No Yes No Yes

Crash frequency1 1.11 3.34 0.00 0.00
GDP growth2 4.62E-04 4.62E-04 4.63E-04 4.62E-04
Loans denied3 0 0 0 0
Capacity utilization4 100 100 100 100
Prior weight5 0.31 0.31 0.31 0.31
Total runs 900 899 900 900

Source: Authors’s computations.
Notes: 1. Crashes per 1000 runs. 2. Average rate of weekly growth from
logarithmic regression. 3. Percent of total firms. 4. Moving average over
last 100 runs averaged over all runs. 5. Average over all runs.

Table 5: Financial constraint on

Preferential Attachment?
No Yes

Weighted Network? Weighted Network?
No Yes No Yes

Crash frequency1 26.73 24.12 6.68 8.17
GDP growth2 2.40E-04 2.44E-04 2.54E-04 2.53E-04
Loans denied3 19.8 20.0 20.5 20.5
Capacity utilization4 70 70 69 69
Prior weight5 0.29 0.30 0.30 0.30
Total runs 2581 2612 2693 2693

Source: Authors’s computations.
Notes: 1. Crashes per 1000 runs. 2. Average rate of weekly growth from
logarithmic regression. 3. Percent of total firms. 4. Moving average over
last 100 runs averaged over all runs. 5. Average over all runs.
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Figure 9: Clustered volatility in the S&P 500

The weight on the Bayesian prior is low, around 30 percent in both tables, which implies
that the relative precision of the private signal is, on average, high. This implies that social
learning is taking place in all runs, even those that lead to a crash. In the latter financial
agents progressively attach less weight to their informative private signals. Social learning
begins to break down and herding behavior takes over. In the limit, this gives rise to asset
price bubbles fueled by rapid growth that are then followed by crashes Bikhchandani et al.
(1998).31

31Observe from the tables that the prior weight is slightly higher with the financial constraint off. In
table 4 capacity utilization never deviates from 100 percent and so the private signal never deviates from
“bullish” by assumption. The variance of the private signal is zero. Any time the asset price falls, however,
the private signal will be incorrect momentarily. The forecast error will then impart some loss of precision of
the private signal, increasing the weight on the prior. A noisy signal increases the prior weight. This noise
contributes nothing to social learning when the financial constraint is off since capacity utilization is always
full and so there is nothing to be learned. With the financial constraint on, however, deviations from full
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Table 4 can be seen as the counterpart to stand-alone financial models that heavily
populate the literature on the financial system. Table 5, on the other hand, shows the effects
of real and financial interactions, arguably the proper environment in which to study the
impact of financial network structure. With the financial constraint on, network architecture
makes subtle but important differences that demand closer investigation.

Both structural elements of the network, preferential attachment and weighted links,
can be seen as treatments relative to a control in which the network is randomly attached
and unweighted. The treatments are uncorrelated (−0.0042) so that the t-statistics are not
affected by omitted variable bias. The effects of the two structural elements are shown in
tables 6 and 7.

The first two columns of table 6 show the impact of financial network architecture on
crash frequency. The effect of weighted network links is statistically insignificant, while that
of preferential attachment is negative and highly significant. The second two columns of table
6 reveal that neither network weights nor preferential attachment has a significant effect on
GDP growth, helping to isolate the effect of network structure on crash frequency. The first
two columns of table 7 indicate that both weighted networks and preferential attachment
significantly increase loans denied. The second two columns show the same effect on the
weight on the Bayesian prior.

Table 7 indicates that there are more loans denied in both weighted and preferentially
attached networks. Yet table 6 shows no effect of network structure on GDP growth. This is
because a higher level of loans denied does not necessarily reduce the quantity of investment
and the pace of growth. The large number of loans denied shows that the distribution of
growth is affected by network structure, viz., most growth occurs in large firms while small
firms have more limited access to the financial system. Concentration in the financial sector
goes hand-in-hand with the concentration in the real as described in Axtell (1999).

Next consider the last two columns of table 7, which show that both weighted and
preferentially attached networks increase the weight on the Bayesian prior. Generally, a
large weight on the Bayesian prior is a harbinger of crisis, inasmuch as social learning begins
to deteriorate as the financial system decouples from the real side. Yet, column two of table
6 indicates that preferential attachment reduces crash frequency.

To understand why, consider a large firm associated with a high-degree hub. Flush
with finance, this firm makes a significant investment and in so doing, increases capacity
utilization throughout the system. The counterpart to this large firm is a smaller producer

capacity utilization do indeed convey useful information. In the data set as a whole, the variance of the asset
price with the financial constraint on is 1.024 but only 0.663 when it is off. A comparison of means shows a
significant effect of the financial constraint in the weighting of private versus prior signals (t = 520.2). It is
important to see that there is more social learning taking place with the financial constraint on than off. This
is verified by the extremely low correlation, (−0.009), between the private and prior signals when there is no
financial constraint. When the private signal is variable, the correlation between the private and prior signals
rises dramatically to 0.273. This is simply an expression of the interconnectedness of the rates of capacity
utilization in the economy. If financial agents are not always predicting full capacity utilization, then their
informative signal is more likely to be correlated with the informative signals of their linked neighbors.
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Table 6: Regression results

(1) (2) (3) (4)
Crashes1 Crashes1 GDP Growth2 GDP Growth2

Weighted network -3.421e-07 1.653e-06
(1.667e-06) (1.199e-05)

Preferential -1.221e-05*** 1.114e-05
attachment (1.689e-06) (1.198e-05)

Constant 1.110e-05*** 1.718e-05*** 2.470e-04*** 2.422e-04***
(1.190e-06) (1.495e-06) (8.438e-06) (8.320e-06)

R2 − adjusted -0.000 0.000 -0.000 -0.000
R2 0.000 0.000 0.000 0.000
Observations 1.57e+07 1.57e+07 1.57e+07 1.57e+07
F -stat 0.042 52 0.019 0.865

Standard errors in parentheses. *** p < 0.01, ** p< 0.05, * p< 0.1
Notes: 1. Crashes per 1000 runs of 1,500 weeks (30 years). 2. Real GDP growth per week.
Source: Author’s computations.
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Table 7: Regression results

(1) (2) (3) (4)
Loans Denied1 Loans Denied1 Bayesian Prior2 Bayesian Prior2

Weighted network 0.8*** 0.0029***
(0.009) (4.989e-05)

Preferential 4.132*** 0.009***
attachment (0.009) (4.988e-05)

Constant 136.1*** 134.4*** 0.292*** 0.289***
(0.007) (0.007) (3.550e-05) (3.591e-05)

R2 − adjusted 0.000 0.013 0.000 0.002
R2 0.000 0.013 0.000 0.002
Observations 1.57e+07 1.57e+07 1.57e+07 1.57e+07
F -stat 7526 2.03e+05 3375 32233

Standard errors in parentheses. *** p < 0.01, ** p< 0.05, * p< 0.1
Notes: 1. Percent of total number of firms. 2. Average weight on Bayesian prior.
Source: Author’s computations.
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whose capacity utilization is buffeted by random effects. A negative forecast on the part
of the financial agent associated with a small firm might well lead to a denied loan and
an inability to invest. The impact on the rest of the economy, however, is minimal and,
moreover, the small firm’s financial agent will often realize ex post that its forecast had been
defective. This will lead the small firm’s financial agent to put somewhat more weight on
the forecast of the larger financial agent, trusting less its own abilities. In the aggregate the
Bayesian prior weight will show a slight tendency to rise above its value for a corresponding
random network. The rise in the Bayesian prior weight does not imply a decoupling of the
financial from the real sector, however, and social learning is in fact enhanced. Financial
agents are simply learning to pay more attention to those firms who have greater impact on
the macroeconomy as a whole. Crash frequency, for these reasons, declines with preferential
attachment. Preferential attachment, at least under the assumptions of the present model,
does not appear to increase systemic risk.

4. Conclusions

This paper constructs a simple model of real-financial interactions to study the effect of
real performance on the frequency of financial crises. When the performance of the real side
contributes to the frequency with which financial crises are observed, the model suggests
that preferentially attached financial market structures are less fragile and crisis prone. This
result confirms the importance of network architecture for the fragility of financial systems.
The intuition is that disagreement between high-degree hubs preserves disorder in financial
markets. Linked neighbors of high-degree hubs reduce the incidence of grid-spanning clusters
of like-minded financial agents that give rise to bubbles and crashes. High-degree hubs are
evidently still subject to systemic risk of an ordered sequence of asset prices breaking out of
the usual disorder of the market. This is clearly seen in the elevated number of crashes in
preferentially attached networks relative to when the financial constraint is off.

The broader theoretical conclusion of the paper is that the recent collapse of the financial
system does not seem to be due to its preferentially attached network structure per se. The
model is highly simplified, however, and further research may uncover a destructive role for
preferentially attached financial agents in a more complete description of the actual financial
system. The conclusion suggested by the model of this paper, however, is that the financial
sector did not become too connected or too linked to fail, so reducing the interconnectedness
of financial agents should not be the objective of policy designed to bring greater stability
to financial markets. To put this into context, even if it were sensible to allow Lehman
Brothers to fail in September 2008 as punishment for misconduct, the results here suggest
that this may have had unintended negative consequences for financial network architecture
by removing an otherwise stabilizing high-degree hub.

The central message of the paper is the critical importance of real foundations of financial
crisis. Just as Kregel (1985) argued that Keynesian real-side models with no monetary and
financial sectors were akin to “Hamlet without the prince”, so, too, it seems that stand-alone
financial models that neglect the real side are incomplete. Ultimately, neither stand-alone
real sector nor stand-alone financial sector models are suitable instruments.
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5. Appendix: Pseudo code

The program can be expressed as:

1. Initialize data structures and runtime options

2. Set key parameters

(a) Set share weights–boolean
(b) Set preferential attachment–boolean
(c) Set financial constraint–boolean
(d) Set run years–30 × 50 weeks

3. Set up and initialize network

4. Reassign financial agents such that each firm has at least one financial agent

5. Set shareholders as count financial agents for each firm

6. Initialize surplus of each firm based on randomly assigned parameters

7. Run main

8. If financial constraint = FALSE: set invest = TRUE for all firms

9. If financial constraint = TRUE:

(a) Ask financial agents: make forecast based on last period’s private and public
signals

(b) Ask firms: if surplus > 0 set invest = TRUE
(c) Ask firms: if surplus < 0 ask one of financial agents if loanable funds |surplus|

i. If yes: set invest = TRUE
ii. If no: ask linked neighbor: if loanable funds > |surplus|

A. if yes: set invest = TRUE
B. if no: set invest = FALSE
C. update denied-loan counter

10. Run Gauss Seidel [sum of investment of firms with invest = TRUE]

(a) Set demand shares of firms
(b) Set capacity utilization of firms
(c) Set savings of firms
(d) Set planned investment
(e) Set surpluses of firms
(f) Set loanable funds = surpluses of surplus firms

11. If share-weight = TRUE

(a) Re-weight links by accumulated capital stocks

12. Stop for crash

13. Stop for year limit

14. Stop for capacity utilization lower limit (0.6)

15. Return to main

16. Process output
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